Outrunning damage: Electrons vs X-rays—timescales and mechanisms

نویسنده

  • John C. H. Spence
چکیده

Toward the end of his career, Zewail developed strong interest in fast electron spectroscopy and imaging, a field to which he made important contributions toward his aim of making molecular movies free of radiation damage. We therefore compare here the atomistic mechanisms leading to destruction of protein samples in diffract-and-destroy experiments for the cases of high-energy electron beam irradiation and X-ray laser pulses. The damage processes and their time-scales are compared and relevant elastic, inelastic, and photoelectron cross sections are given. Inelastic mean-free paths for ejected electrons at very low energies in insulators are compared with the bioparticle size. The dose rate and structural damage rate for electrons are found to be much lower, allowing longer pulses, reduced beam current, and Coulomb interactions for the formation of smaller probes. High-angle electron scattering from the nucleus, which has no parallel in the X-ray case, tracks the slowly moving nuclei during the explosion, just as the gain of the XFEL (X-ray free-electron laser) has no parallel in the electron case. Despite reduced damage and much larger elastic scattering cross sections in the electron case, leading to not dissimilar elastic scattering rates (when account is taken of the greatly increased incident XFEL fluence), progress for single-particle electron diffraction is seen to depend on the effort to reduce emittance growth due to Coulomb interactions, and so allow formation of intense sub-micron beams no larger than a virus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative evaluation of radiation damage to polyethylene terephthalate by soft X-rays and high-energy electrons.

The chemical changes and absolute rates in radiation damage to polyethylene terephthalate (PET) caused by soft X-rays and energetic electrons have been measured using a scanning transmission X-ray microscope (STXM). Electron beam damage at two different dose rates and a range of doses was performed in an 80 keV transmission electron microscope (TEM). The STXM beam was used to create damage patt...

متن کامل

High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena

It is now well established that both thunderclouds and lightning routinely emit x-rays and gamma-rays. These emissions appear over wide timescales, ranging from submicrosecond bursts of x-rays associated with lightning leaders, to sub-millisecond bursts of gamma-rays seen in space called terrestrial gamma-ray flashes, to minute long glows from thunderclouds seen on the ground and in or near the...

متن کامل

X-ray Damage to CF3CO2-Terminated Organic Monolayers on Si/Au: Principal Effect of Electrons.

The relative importance of x-rays alone and of x-ray-generated primary and secondary electrons in damaging organic materials was explored by use of self-assembled monolayers (SAMs) on multilayer thin-film supports. The substrates were prepared by the deposit of thin films of silicon (0, 50, 100, and 200 angstroms) on thick layers of gold (2000 angstroms). These systems were supported on chromiu...

متن کامل

Simultaneous optical and X-ray high speed photometry of Cyg X-2

The X-ray emission from X-ray binaries may originate in flares occurring when magnetic loops anchored in the disc reconnect. In analogy with our Sun, Hα emission should arise as the accelerated electrons thermalize in the optically emitting disc, perhaps leading to correlated variability between X-rays, Hα and the optical continuum. We present simultaneous X-ray and optical high speed photometr...

متن کامل

Probing nucleobase photoprotection with soft x-rays

Nucleobases absorb strongly in the ultraviolet region, leading to molecular excitation into reactive states. The molecules avoid the photoreactions by funnelling the electronic energy into less reactive states on an ultrafast timescale via non-BornOppenheimer dynamics. Current theory on the nucleobase thymine discusses two conflicting pathways for the photoprotective dynamics. We present our fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017